Q.P. Code: 19CE1005		
Reg.	No:	. 4
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR		
(AUTONOMOUS)		
M.Tech I Year II Semester Supplementary Examinations Feb-2021 FEM IN STRUCTURAL ENGINEERING		
(STRUCTURAL ENGINEERING)		
Time: 3 hours Max. Marks: 60		
	(Answer all Five Units $5 \times 12 = 60$ Marks)	
	UNIT-I	
1	a Explain discretization and classification of discretization.	6M
	b Explain nodes at discontinuities.	6M
	OR	
2	A beam AB of span L simply supported at ends and carrying a concentrated load W at	12M
	the centre C. Determine the deflection at mid span by using Rayleigh-Ritz method and	1 2 1 1
	compare with exact solution.	
UNIT-II		
3	Derive the Stiffness matrix for 1D – two noded linear bar element.	12M
	OR	
4	Derive the shape function, strain displacement matrix element stiffness matrix for a	12M
	two noded 1-D Element.	
	UNIT-III	
5	Derive shape functions for four noded rectangular elements. Use natural Co-ordinate	12M
	system.	
	OR	
6	Derive the strain-displacement matrix for CST element.	12M
	UNIT-IV	
7	Explain the isoperimetric concept in finite element analysis.	12M
	OR	
8	Derive the Jaccobian matrix for 4-noded rectangular element.	12M
	UNIT-V	
9	Write the stiffness matrix for a hexahedral element.	12M
	OR	
10	Explain about different types of 3-D solid elements.	12M

*** END ***